3.6.35 \(\int \frac {\csc ^3(e+f x)}{(d \csc (e+f x))^{3/2}} \, dx\) [535]

Optimal. Leaf size=73 \[ -\frac {2 \cos (e+f x) \sqrt {d \csc (e+f x)}}{d^2 f}-\frac {2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right )}{d f \sqrt {d \csc (e+f x)} \sqrt {\sin (e+f x)}} \]

[Out]

-2*cos(f*x+e)*(d*csc(f*x+e))^(1/2)/d^2/f+2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*Ellip
ticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))/d/f/(d*csc(f*x+e))^(1/2)/sin(f*x+e)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {16, 3853, 3856, 2719} \begin {gather*} -\frac {2 \cos (e+f x) \sqrt {d \csc (e+f x)}}{d^2 f}-\frac {2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right )}{d f \sqrt {\sin (e+f x)} \sqrt {d \csc (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^3/(d*Csc[e + f*x])^(3/2),x]

[Out]

(-2*Cos[e + f*x]*Sqrt[d*Csc[e + f*x]])/(d^2*f) - (2*EllipticE[(e - Pi/2 + f*x)/2, 2])/(d*f*Sqrt[d*Csc[e + f*x]
]*Sqrt[Sin[e + f*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {\csc ^3(e+f x)}{(d \csc (e+f x))^{3/2}} \, dx &=\frac {\int (d \csc (e+f x))^{3/2} \, dx}{d^3}\\ &=-\frac {2 \cos (e+f x) \sqrt {d \csc (e+f x)}}{d^2 f}-\frac {\int \frac {1}{\sqrt {d \csc (e+f x)}} \, dx}{d}\\ &=-\frac {2 \cos (e+f x) \sqrt {d \csc (e+f x)}}{d^2 f}-\frac {\int \sqrt {\sin (e+f x)} \, dx}{d \sqrt {d \csc (e+f x)} \sqrt {\sin (e+f x)}}\\ &=-\frac {2 \cos (e+f x) \sqrt {d \csc (e+f x)}}{d^2 f}-\frac {2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right )}{d f \sqrt {d \csc (e+f x)} \sqrt {\sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 55, normalized size = 0.75 \begin {gather*} \frac {-2 \cot (e+f x)+\frac {2 E\left (\left .\frac {1}{4} (-2 e+\pi -2 f x)\right |2\right )}{\sqrt {\sin (e+f x)}}}{d f \sqrt {d \csc (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^3/(d*Csc[e + f*x])^(3/2),x]

[Out]

(-2*Cot[e + f*x] + (2*EllipticE[(-2*e + Pi - 2*f*x)/4, 2])/Sqrt[Sin[e + f*x]])/(d*f*Sqrt[d*Csc[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.11, size = 510, normalized size = 6.99

method result size
default \(\frac {\left (2 \cos \left (f x +e \right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-i \cos \left (f x +e \right )+\sin \left (f x +e \right )+i}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\cos \left (f x +e \right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-i \cos \left (f x +e \right )+\sin \left (f x +e \right )+i}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+2 \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-i \cos \left (f x +e \right )+\sin \left (f x +e \right )+i}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-i \cos \left (f x +e \right )+\sin \left (f x +e \right )+i}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\sqrt {2}\right ) \sqrt {2}}{f \left (\frac {d}{\sin \left (f x +e \right )}\right )^{\frac {3}{2}} \sin \left (f x +e \right )^{2}}\) \(510\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^3/(d*csc(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(2*cos(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*((-I*co
s(f*x+e)+sin(f*x+e)+I)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))
-cos(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*((-I*cos(f*x+
e)+sin(f*x+e)+I)/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+2*(-I
*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*((-I*cos(f*x+e)+sin(f*x+e)+I
)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-(-I*(-1+cos(f*x+e))/
sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*((-I*cos(f*x+e)+sin(f*x+e)+I)/sin(f*x+e))^(1/
2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-2^(1/2))/(d/sin(f*x+e))^(3/2)/sin(f*x
+e)^2*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3/(d*csc(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)^3/(d*csc(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 89, normalized size = 1.22 \begin {gather*} -\frac {2 \, \sqrt {\frac {d}{\sin \left (f x + e\right )}} \cos \left (f x + e\right ) + \sqrt {2 i \, d} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + \sqrt {-2 i \, d} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{d^{2} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3/(d*csc(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-(2*sqrt(d/sin(f*x + e))*cos(f*x + e) + sqrt(2*I*d)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x +
e) + I*sin(f*x + e))) + sqrt(-2*I*d)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x
+ e))))/(d^2*f)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\csc ^{3}{\left (e + f x \right )}}{\left (d \csc {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**3/(d*csc(f*x+e))**(3/2),x)

[Out]

Integral(csc(e + f*x)**3/(d*csc(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3/(d*csc(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)^3/(d*csc(f*x + e))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\sin \left (e+f\,x\right )}^3\,{\left (\frac {d}{\sin \left (e+f\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(e + f*x)^3*(d/sin(e + f*x))^(3/2)),x)

[Out]

int(1/(sin(e + f*x)^3*(d/sin(e + f*x))^(3/2)), x)

________________________________________________________________________________________